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1 Queueing Theory

Definition 1.1 (The label of queueing system)
Normally a queueing system is noted with A/S/c, where A is the property of arrival

process, S is the property of service process, c is the number of servers.

A: arrival process S: service process

M : memoryless Poisson arrival iid exponential service times
G: general iid interarrival times iid service times

D: deterministic fixed interarrival times fixed service times

2 M/M/k

Lemma 2.1 (Pi for M/M/1)
Assume λn = λ, µn = µ, λ/µ < 1, then

Pn =
(λ/µ)n

1 +
∑∞

n′=1(λ/µ)
n′ =

(
λ

µ

)n(
1− λ

µ

)
, n ≥ 0

Proof By Birth and Death process. ■

Lemma 2.2 (Independence of present and past)
In an ergodic M/M/1 queue in steady state,

1. the number of customers presently in the system is independent of the sequence of

past departure times,

2. the waiting time spent in the system (waiting in queue plus service time) by a

customer is independent of the departure process prior to his departure.

Lemma 2.3 (Truncated M/M/1 queue)
Consider an M/M/1 queue in which arrivals findingN in the system do not enter but rather

are lost. This finite capacity M/M/1 system can be regarded as a truncated version of



3 M/G/k

the M/M/1 and so it is time reversible with limiting probabilities given by

Pj =
(λ/µ)j∑N
i=0(λ/µ)

i
, 0 ≤ j ≤ N

Proof Follow Lemma ??. ■

Lemma 2.4 (Output of M/M/s queue)
Consider an M/M/s queue in which customers arrive in accordance with a Poisson

process having rateλ and are served by any one of s servers – each having an exponentially

distributed service time with rate µ. If λ < sµ, then the output process of customers

departing is, in steady state, a Poisson process with rate λ.

Lemma 2.5 (M/M/s queue and Birth and Death Process)
Suppose arrival rate λ and service rate µ, if we let X(t) denote the number in the system

at time t, then {X(t), t ≥ 0} is a birth and death process with

µn =

 nµ 1 ≤ n ≤ s

sµ n > s
and λn = λ, n ≥ 0

3 M/G/k

When the arrival process with rate λ, and say that a cycle correspond to the start of a busy

period, then the time of a cycle inclue (i) the busy period of the cycle and (ii) the time from

the departure of the last customer in the cycle to the next arrival. According to the memoryless

property of Poisson arrivals, the latter is exponentially distributed with mean 1/λ:

E[ time of a cycle ] = E[ time of a busy period ] + 1/λ

Lemma 3.1 (The # of customers that have completed service by time t and not (Song, 2020, Lec. 2))
The # of customers N1(t) that have completed service by time t is Poisson with mean

E [N1(t)] = λ

∫ t

0
G(t− s)ds = λ

∫ t

0
G(y)dy

and the # of customers N2(t) being served at time t is Poisson with mean

E [N2(t)] = λ

∫ t

0
Ḡ(t− s)ds = λ

∫ t

0
Ḡ(y)dy

Further, N1(t) and N2(t) are independent.
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4 G/M/k

4 G/M/k

5 G/G/k and Little’s Law

Lemma 5.1 (Arrival only when Free server (Song, 2020, PS. 2))
Assume that an arrival only enters the bank if the server is free when he or she arrives,

then the events of entering the bank by time t constitute a renewal process, while the events

of leaving the bank by time t does not constitute a renewal process. But if the arrival is

exponential, then the events of leaving constitutes a (delayed) renewal process.

Proof For entering, both the future arrivals and service times are independent of the history,

that is, the process begins anew. For leaving, the next arrival depends on the time of the last

arrival before or at t. ■

Customers arrive at a single-server service station according to a renewal process. Upon

arrival, she is immediately served if the server is idle, and waits if the server is busy. The service

time is i.i.d, and is independent of the arrival stream. Suppose that the first customer arrives at

time 0. Let Xi denote the time between the ith and (i+1)st arrival, and Yi denote the ith service

time. And assume that E[Yi] < E[Xi] < ∞, which ensures the finiteness conditions for the

theorem for renewal reward process and the Wald’s equation.

Definition 5.1
n(t):= the number of customers in the system at time t

L = limt→∞
∫ t
0 n(s)ds/t:= long-run average number of customers in the system

n(s):= a reward is earned at time s

L represents the long-run average reward

L = lim
t→∞

∫ t

0
n(s)ds/t =

E[reward during a cycle]
E[time of a cycle]

=
E[

∫ T
0 n(s)ds]

E[T ]
Theorem of renewal reward process

Define a discrete-time renewal reward process

Definition 5.2
Wi:= the amount of time the ith customer spends in the system, and we say we

received a reward Wi at the arrival of ith customer

W := limn→∞
W1+...+Wn

n

N := the number of customers served in a cycle

W =
E[reward during a cycle]

E[time of a cycle]
=

E[
∑N

i=1Wi]

E[N ]

Remark A new cycle begins each time when an arrival finds the system empty, and obviously

the process restarts itself each cycle.
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5 G/G/k and Little’s Law

Theorem 5.1 (Little’s Law)
Let λ = 1/E[Xi] denote the arrival rate, then L = λW .

Remark Acutally, the little’s law holds for more general queueing system.

Proof Note that T is the length of a cycle, and N is the number of customers served in a

cycle. Obviously, T =
∑N

i=1Xi. Note that the event {N = n} is equivalent to: (i) for any

k = 1, ..., n− 1, the (k+1)st arrival time is before the kth departure time, and (ii) the (n+1)st

arrival time is after the nth departure time. Therefore, {N = n} is independent of Xn+1... and

is a stopping time for X1, ...

X1 + ...+Xk < Y1 + ...+ Yk, k = 1, .., n− 1

X1 + ...+Xn > Y1 + ...+ Yn

Hence by the Wald’s equation, we have

E[T ] = E[N ]E[X] = E[N ]/λ

L = λ
E
[∫ T

0 n(s)ds
]

E[N ]
= λW

E
[∫ T

0 n(s)ds
]

E
[∑N

i=1Wi

]
By imaging that each customer pay at a rate of 1 per unit time when in the system, we see∫ T

0
n(s)ds =

N∑
i=1

Wi = total paid during a cycle

Reduce it can prove the theorem. ■

Lemma 5.2 (Server Utilization)
1. For a G/G/1 queue, let Ut denote whether the server is busy at time t.

Server Utilization = E [Yi] /E [Xi]

2. For a G/G/k queue, let Ut denote whether the server is busy at time t.

Server Utilization = E [Yi] / (kE [Xi])

Proof

G/G/1’s Server Utilization = lim
t→∞

∫ t
0 Usds

t

= lim
t→∞

∫ t
0 ( number in service at s)ds

t

= average number in service

= λE [Yi] by Little’s law

= E [Yi] /E [Xi]
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6 Tandem Queue

G/G/k’s Server Utilization = lim
t→∞

∫ t
0 Usds

t

= lim
t→∞

∫ t
0 ( number served by server i at s)ds

t

= average number served by serveri

=
average number in service

k
as all servers are identical

= λE [Yi] /k by Little’s law

= E [Yi] / (kE [Xi])

(1)

■

6 Tandem Queue

Theorem 6.1
For the ergodic tandem queue in steady state,

1. the numbers of customers presently at server 1 and at server 2 are independent, and

P

 n at server 1,

m at server 2

 =

(
λ

µ1

)n(
1− λ

µ1

)(
λ

µ2

)m(
1− λ

µ2

)
2. the waiting time of a customer at server 1 is independent of its waiting time at server

2.

Proof Follow Lemma 2. ■

7 Jackson Network
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